On probabilistic pushdown automata
نویسندگان
چکیده
We study the most important probabilistic computation modes for pushdown automata. First we show that deterministic pushdown automata (pda) are weaker than Las Vegas pda, which in turn are weaker than one-sided-error pda. Next one-sidederror pda are shown to be weaker than (nondeterministic) pda. Finally bounded error two-sided error pda and nondeterministic pda are incomparable. To show the limited power of bounded error two-sided pda we apply communication arguments; in particular we introduce a non-standard model of communication which we analyze with the help of the discrepancy method. The power of randomization for pda is considerable, since we construct languages which are not deterministic context-free (resp. not context-free) but are recognizable with even arbitrarily small error by one-sided-error (resp. bounded-error) pda. On the other hand we show that, in contrast to many other fundamental models of computing, error probabilities can in general not be decreased arbitrarily: we construct languages which are recognizable by one-sided-error pda with error probability 12 , but not by one-sided-error pushdown automata with error probability p < 12 . A similar result, with error probability 1 3 , holds for bounded error two-sided error pda.
منابع مشابه
Bisimilarity of Probabilistic Pushdown Automata
We study the bisimilarity problem for probabilistic pushdown automata (pPDA) and subclasses thereof. Our definition of pPDA allows both probabilistic and non-deterministic branching, generalising the classical notion of pushdown automata (without ε-transitions). Our first contribution is a general construction that reduces checking bisimilarity of probabilistic transition systems to checking bi...
متن کاملOn Quantum Pushdown Automata
Quantum finite automata, as well as quantum pushdown automata were first introduced by C. Moore, J. P. Crutchfield [MC 97]. In this paper we introduce the notion of quantum pushdown automata in a non-equivalent way, including unitarity criteria, by using the definition of quantum finite automata of [KW 97]. It is established that the unitarity criteria of quantum pushdown automata are not equiv...
متن کاملAnalyzing probabilistic pushdown automata
The paper gives a summary of the existing results about algorithmic analysis of probabilistic pushdown automata and their subclasses.
متن کاملGame Characterization of Probabilistic Bisimilarity, and Applications to Pushdown Automata
We study the bisimilarity problem for probabilistic pushdown automata (pPDA) and subclasses thereof. Our definition of pPDA allows both probabilistic and non-deterministic branching, generalising the classical notion of pushdown automata (without ε-transitions). We first show a general characterization of probabilistic bisimilarity in terms of two-player games, which naturally reduces checking ...
متن کاملDeciding Probabilistic Simulation between Probabilistic Pushdown Automata and Finite-State Systems
This paper studies the decidability and computational complexity of checking probabilistic simulation pre-order between probabilistic pushdown automata (pPDA) and (probabilistic) finite-state systems. We show that checking classical and combined probabilistic similarity are EXPTIMEcomplete in both directions and become polynomial if both the number of control states of the pPDA and the size of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Comput.
دوره 208 شماره
صفحات -
تاریخ انتشار 2010